I began following this lecture at the LMU Munich for my B.Sc. Mathematics (LMU) during my 3rd Semester without completing it, I collect here some notes I took during the course.
Lecture Notes
Here is a recap of all definitions and propositions relevant for the exam and presented in the lectures and published material.
-
- Raum, is a -Al. iff (i) (ii) (iii)
- is a w-Maß iff (i) (ii) .
- Farben, mit Reihenfolge, mit Zurücklegen: ,
- Farben, mit Reihenfolge, ohne Zürucklegen: inj., ==?==. L.1
- Multindex Notation: , , . L.2
- Farben, mit Reihenfolge innerhalb d. Farbe , .
- Farben, ohne Reihenfolge innerhalb d. Farbe , .
-
- s.t. (i) , (ii) , (iii) .
- Also (iv) , (v) , (vi)
- For -al., then is a -al.
- For , is a -al. , smallest -al. with .
- , and in general for a topological space L.2 discrete ; else: open. Notice:
-
- For , s.t. (i) , (ii) L.3
- If (ii), (iii) and it is a w-Maß. Consider the set theoretic conseq.
- For , and if then
- , or also is an equal distribution on a -dim interval. L.4
- is -almost sure if .
-
Tools
- On , 3.1 (Distribution function)
- (i) , (ii) mon.f., then (iii) . 3.2
- for , meas., for the respective distribution function , , holds . 3.3;5
- is -st. gen. of , if is -st. and
- meas. that agree on a -st. gen., then they are equal.
- On , 3.1 (Distribution function)
-
- (i) , (ii) , (iii) disj. seq then .
- for and ,
- -st. and a dyn.sy. on , then (Dynkin Lemma)
-
- is meas. define for .
- A cont. funciton is meas., also closed under , , , , , , .
- from meas, consider as a cont. func on func.
- for tfae: (i) is --meas., (ii)
- same holds for , , , or since they all generate .
- A cont. funciton is meas., also closed under , , , , , , .
- . Simply check what I noted in Analysis III (Lecture).
- just like in Analysis II (Lecture).
- is meas. define for .
-
J, Dichte
- for , meas. s.t. , then is a meas.
- Examples:
- Gleichverteilung: , .
- Exponentialverteilung: ,
- Gauß Verteilung: for , then .
- Dirac measure has no Dichte!
-
Quantil
- prob.meas. on with dis.f., for , elem in are -quantils on .
- inj. quantil is unique
- a “quasi-inverse” a -quantil of , hence is the quantil function.
- for and an index set , , then is -al. on . 4.4;9
- 4.5;9 (Product -Algebra)
- (existence and uniqueness of the product measure) 4.6;9
- prob.meas. on with dis.f., for , elem in are -quantils on .
-
and meas. s.t. , then has the dichte: .
- for , the proj. of the first coord.
- From 13.3 Iterierte Integrale (The Italians) recall: Tonelli, Fubini
-
Let (i) , (ii) let have a Dichte respect , (iii) -Diffeo on op., then: Dichte, .
- Recall 13.4 Transformationssatz
-
Conditional Probabilities
- for , a Ereignis s.t. define 4.10;10
- is a prob.meas. on
- for a disj.zer. of s.t. then
- for a disj.zer. of s.t. , then 4.12;11 (Bayes)
- for , a Ereignis s.t. define 4.10;10
-
Stochastic Independence
- sto.ind. for if 4.12;11
- sto.ind. for if: for each , for all s.t. holds: is sto.ind. for .
- sto.ind. sto.ind.
- for: , and let distr. of , then sto.ind.
- in this case also for meas, and sto.ind.
- for pair. disj. subsets. of , s.t. , and meas. and for sto.ind., then sto.ind.
- a fam. of -st. set.sys. are sto.ind. if for each if for all s.t. holds is sto.ind. for .
- for , and then sto.ind. for is a dyn.sys.
-
Theory and Epirie
- for prob.sp., meas.sp. for indep. and identically distributed if independent and (i.i.d) 5.1;13
- Notation:
- for , , if int. write and say: has the th. moment in .
- check Bsp. 1. at the end of L. 13
- 5.3;14
- is a Linear Space .
- (Monotony)
- (Cauchy-Schwarz)
- for , 5.4;14
- (Variance)
- (Standardabweichung)
- (Covariance)
- (Correlation)
- then say is centred
- central th moment of .
- (Variance)
- for , independent, then: 5.5;14
- (say those are uncorrelated independent, only one direction. A fam. is uncorr. if pairw. uncorr.)
- for ,
- for uncorr., then
- for prob.sp., meas.sp. for indep. and identically distributed if independent and (i.i.d) 5.1;13
-
for uncorr., and ident.distr. then: 5.6;15 (Weak principle of big numbers)
- (ident.distr.)
-
for , and zufallv. s.t. , then (Tschebyschaff Inequality)
-
zufallv., , then:
-
zufallv. and , (conv. in prob.)
-
zufallv., def. (Laplace-Transformation/Momenterzwegende Funktion) 5.10;16
-
zufallv. with real values, and (exp. Tschebyschaff Inequality)
-
for ind. s.t. then
-
for iid zufallv., , s.t. , , then (-fast sicher), 5.12;16 (Strong principle of big numbers)
-
and , then (i) , (ii) and ind. (Borel-Cantelli Lemma)
- consider and as in Analysis III (Lecture).
- also: (see exercise)
-
(Skalierung)
-
(Characteristical Function)
- glm.stet.
- for zufallv. ind.:
- (3), (4);18
-
for real zufallv. s.t. and then 5.15;18
-
for real zufallv. uniformely distr. and ind., for , s.t. and , then 5.16;18 (Zentrale Grenzwertsatz)
-
real zufallv. and distr. with Dicht e , then 5.17;18 (Normal Distribution)
- Standard Normal Distribution if and .
- for and